Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemphyschem ; : e202400117, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38511646

RESUMO

Despite the current high interest, there is limited information on diffusion data for intrinsically disordered proteins (IDPs). This study investigates the effect of crowding on the diffusion behaviour of an elastin-like peptide (ELP), by combined pulse field gradient (PFG) and static field gradient (SFG) NMR techniques. We interpret our findings in terms of highly dynamic chain assemblies with weak interactions, resulting in ELP diffusion that is primarily governed by the viscous flow of the solvent. The diffusion behaviour of the peptide appears to resemble that of globular proteins rather than flexible linear polymers over a wide concentration range.

2.
J Phys Chem B ; 126(33): 6324-6330, 2022 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-35973008

RESUMO

Protein hydration shell dynamics plays a pivotal role in biochemical processes such as protein folding, enzyme function, molecular recognition and interaction with biological membranes. Thus, it is crucial to understand the mobility of the solvation shell at the surface of biomolecules. Triplet state solvation dynamics can reveal the slow dynamics of the solvation shell. This is done in the present work without adding separate dye molecules but instead by using a phosphorescent subgroup of the biomolecule itself. In particular, we study a small heptapeptide in a glycerol-water mixture under cryoconservation conditions so that the system can be supercooled without crystallization. We find a significant slowing of molecules in the solvation shell in the millisecond range compared to the bulk. This opens up the possibility to unravel the nature of relaxation processes in the solvation shell usually overlapping at room temperature.


Assuntos
Dobramento de Proteína , Água , Água/química
3.
Phys Chem Chem Phys ; 23(1): 683-693, 2021 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-33336668

RESUMO

Triplet state solvation dynamics (TSD) is a truly local measurement technique, where a dye molecule is dissolved as a probe at low concentration in a solvent. Depending on the dye molecule, local information on mechanical or dielectric solvation can be obtained. So far, this method has mainly been used to investigate topics such as fundamentals of glassy dynamics and confinement effects. Based on the procedure presented in [P. Weigl et al., Z. Phys. Chem., 2018, 232, 1017-1039] in the present contribution two new TSD probes, namely indole and its derivative cbz-tryptophan, are identified and characterized in detail. In particular, their longer phosphorescence lifetime allows for a significant extension of the timescale of local mechanical and dipolar solvation measurements. In combination with previously used dyes a measurement window of up to five orders of magnitude in time can be covered. Furthermore, we show that in cbz-tryptophan the indole unit is the phosphorescence center, while the rest of the molecule only slightly contributes to the solvation response function. The detailed understanding of these two new TSD probes presented in this work, will allow in depth investigations of solvation and the corresponding dynamics also for biologically relevant systems in the future.

4.
Soft Matter ; 15(20): 4192-4199, 2019 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-31065653

RESUMO

Elastin-like peptides are biopolymers that display LCST behaviour in solution quite similar to other synthetic polymers like polyethylene oxide. Here we study the structure of the peptide GVG(VPGVG)3 in a temperature range of 25 °C to 70 °C with small angle neutron scattering. The LCST for this peptide is outside the experimental range of temperatures. Molecular conformation is well described within the model of a random coil but increasing temperature leads to significant changes. The peptide displays a combination of conformational change and aggregation that show up in the scattering at low and intermediate scattering vector q. The aggregate size is determined from an integral measure of the scattered intensity. It increases with temperature and concentration. For low concentration we find a size variation with temperature that may be related to the collapse of conformation at the inverse temperature transition (ITT).


Assuntos
Elastina/química , Peptídeos Cíclicos/química , Ligação de Hidrogênio , Peso Molecular , Agregados Proteicos , Conformação Proteica , Temperatura , Temperatura de Transição
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...